
Composite Data Types as Algebra, Logic Recursive Types

Algebraic Data Types;
Recursive Types

Rob Sison
UNSW

Term 3 2024

1

Composite Data Types as Algebra, Logic Recursive Types

Composite Data Types

Most of the types we have seen so far are basic types, in the sense
that they represent built-in machine data representations.
Real programming languages have ways to compose types to
produce new types:

Tuples

Records

Structs

Classes

Unions

2

Composite Data Types as Algebra, Logic Recursive Types

Combining values conjunctively
We want to store two things in one value.

C Structs

typedef struct point {

float x;

float y;

} point;

point midPoint (point p1, point p2) {

point mid;

mid.x = (p1.x + p2.x) / 2.0;

mid.y = (p2.y + p2.y) / 2.0;

return mid;

}

Java

class Point {

public float x;

public float y;

}

Point midPoint (Point p1, Point p2) {

Point mid = new Point();

mid.x = (p1.x + p2.x) / 2.0;

mid.y = (p2.y + p2.y) / 2.0;

return mid;

}

“Better” Java
class Point {

private float x;

private float y;

public Point (float x, float y) {

this.x = x; this.y = y;

}

public float getX() {return this.x;}

public float getY() {return this.y;}

public float setX(float x) {this.x=x;}

public float setY(float y) {this.y=y;}

}

Point midPoint (Point p1, Point p2) {

return new Point((p1.getX() + p2.getX()) / 2.0,

(p2.getY() + p2.getY()) / 2.0);

}

Haskell Tuples

type Point = (Float, Float)

midpoint (x1,y1) (x2,y2)

= ((x1+x2)/2, (y1+y2)/2)

Haskell Datatypes

data Point =

Pnt { x :: Float

, y :: Float

}

midpoint (Pnt x1 y1) (Pnt x2 y2)

= Pnt ((x1+x2)/2) ((y1+y2)/2)

midpoint' p1 p2 =

= Pnt ((x p1 + x p2) / 2)

((y p1 + y p2) / 2)

3

Composite Data Types as Algebra, Logic Recursive Types

Product Types

In MinHS, we will have a very minimal way to accomplish this,
called a product type:

τ1 × τ2
We won’t have type declarations, named fields or anything like
that. More than two values can be combined by nesting products,
for example a three dimensional vector:

Int× (Int× Int)

4

Composite Data Types as Algebra, Logic Recursive Types

Constructors and Eliminators

We can construct a product type similar to Haskell tuples:

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

The only way to extract each component of the product is to use
the fst and snd eliminators:

Γ ⊢ e : τ1 × τ2

Γ ⊢ fst e : τ1

Γ ⊢ e : τ1 × τ2

Γ ⊢ snd e : τ2

5

Composite Data Types as Algebra, Logic Recursive Types

Examples

Example (Midpoint)

recfun midpoint ::
((Int× Int) → (Int× Int) → (Int× Int)) p1 =
recfun midpoint ′ ::
((Int× Int) → (Int× Int)) p2 =
((fst p1 + fst p2)÷ 2, (snd p1 + snd p2)÷ 2)

Example (Uncurried Division)

recfun div :: ((Int× Int) → Int) args =
if (fst args < snd args)
then 0
else 1 + div (fst args − snd args, snd args)

6

Composite Data Types as Algebra, Logic Recursive Types

Dynamic Semantics

e1 7→M e ′1

(e1, e2) 7→M (e ′1, e2)

e2 7→M e ′2

(v1, e2) 7→M (v1, e
′
2)

e 7→ e ′

fst e 7→M fst e ′
e 7→ e ′

snd e 7→M snd e ′

fst (v1, v2) 7→M v1 snd (v1, v2) 7→M v2

7

Composite Data Types as Algebra, Logic Recursive Types

Unit Types

Currently, we have no way to express a type with just one value.
This may seem useless at first, but it becomes useful in
combination with other types.
We’ll introduce a type, 1, pronounced unit, that has exactly one
inhabitant, written ():

Γ ⊢ () : 1

8

Composite Data Types as Algebra, Logic Recursive Types

Disjunctive Composition
We can’t, with the types we have, express a type with exactly
three values.

Example (Trivalued type)

data TrafficLight = Red | Amber | Green

In general we want to express data that can be one of multiple
alternatives, that contain different bits of data.

Example (More elaborate alternatives)

type Length = Int

type Angle = Int

data Shape = Rect Length Length

| Circle Length | Point

| Triangle Angle Length Length

This is awkward in many languages. In Java we’d have to use
inheritance. In C we’d have to use unions.

9

Composite Data Types as Algebra, Logic Recursive Types

Sum Types

We will use sum types to express the possibility that data may be
one of two forms.

τ1 + τ2
This is similar to the Haskell Either type.
Our TrafficLight type can be expressed (grotesquely) as a sum
of units:

TrafficLight ≃ 1+ (1+ 1)

10

Composite Data Types as Algebra, Logic Recursive Types

Constructors and Eliminators for Sums

To make a value of type τ1+ τ2, we invoke one of two constructors:

Γ ⊢ e : τ1

Γ ⊢ InL e : τ1 + τ2

Γ ⊢ e : τ2

Γ ⊢ InR e : τ1 + τ2

We can branch based on which alternative is used using pattern
matching:

Γ ⊢ e : τ1 + τ2 x : τ1, Γ ⊢ e1 : τ y : τ2, Γ ⊢ e2 : τ

Γ ⊢ (case e of InL x → e1; InR y → e2) : τ

11

Composite Data Types as Algebra, Logic Recursive Types

Examples

Example (Traffic Lights)

Our traffic light type has three values as required:

TrafficLight ≃ 1+ (1+ 1)

Red ≃ InL ()

Amber ≃ InR (InL ())
Green ≃ InR (InR ())

12

Composite Data Types as Algebra, Logic Recursive Types

Examples
We can convert most (non-recursive) Haskell types to equivalent
MinHS types now.

1 Replace all constructors with 1

2 Add a × between all constructor arguments.

3 Change the | character that separates constructors to a +.

Example

data Shape = Rect Length Length

| Circle Length | Point

| Triangle Angle Length Length

≃

1× (Int× Int)
+ 1× Int + 1
+ 1× (Int× (Int× Int))

13

Composite Data Types as Algebra, Logic Recursive Types

Dynamic Semantics

e 7→M e ′

InL e 7→M InL e ′
e 7→M e ′

InR e 7→M InR e ′

e 7→M e′

(case e of InL x . e1; InR y . e2) 7→M (case e′ of InL x . e1; InR y . e2)

(case (InL v) of InL x . e1; InR y . e2) 7→M e1[x := v]

(case (InR v) of InL x . e1; InR y . e2) 7→M e2[y := v]

14

Composite Data Types as Algebra, Logic Recursive Types

The Empty Type

We add another type, called 0, that has no inhabitants. Because it
is empty, there is no way to construct it.
We do have a way to eliminate it, however:

Γ ⊢ e : 0

Γ ⊢ absurd e : τ

If a variable of the empty type is in scope, we must be looking at
an expression that will never be evaluated. Therefore, we can
assign any type we like to this expression, because it will never be
executed.

15

Composite Data Types as Algebra, Logic Recursive Types

Semiring Structure
The types we have defined form an algebraic structure called a
commutative semiring.
Laws for (τ,+, 0):

Associativity: (τ1 + τ2) + τ3 ≃ τ1 + (τ2 + τ3)

Identity: 0+ τ ≃ τ

Commutativity: τ1 + τ2 ≃ τ2 + τ1

Laws for (τ,×, 1)

Associativity: (τ1 × τ2)× τ3 ≃ τ1 × (τ2 × τ3)

Identity: 1× τ ≃ τ

Commutativity: τ1 × τ2 ≃ τ2 × τ1

Combining × and +:

Distributivity: τ1 × (τ2 + τ3) ≃ (τ1 × τ2) + (τ1 × τ3)

Absorption: 0× τ ≃ 0

What does ≃ mean here?
16

Composite Data Types as Algebra, Logic Recursive Types

Isomorphism

Two types τ1 and τ2 are isomorphic, written τ1 ≃ τ2, if there exists
a bijection between them. This means that for each value in τ1 we
can find a unique value in τ2 and vice versa.
We can use isomorphisms to simplify our Shape type:

1× (Int× Int)
+ 1× Int + 1
+ 1× (Int× (Int× Int))

≃

Int× Int

+ Int + 1
+ Int× (Int× Int)

17

Composite Data Types as Algebra, Logic Recursive Types

Examining our Types
Lets look at the rules for typed lambda calculus extended with
sums and products:

Γ ⊢ e : 0

Γ ⊢ absurd e : τ Γ ⊢ () : 1

Γ ⊢ e : τ1

Γ ⊢ InL e : τ1 + τ2

Γ ⊢ e : τ2

Γ ⊢ InR e : τ1 + τ2

Γ ⊢ e : τ1 + τ2 x : τ1, Γ ⊢ e1 : τ y : τ2, Γ ⊢ e2 : τ

Γ ⊢ (case e of InL x → e1; InR y → e2) : τ

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

Γ ⊢ e : τ1 × τ2

Γ ⊢ fst e : τ1

Γ ⊢ e : τ1 × τ2

Γ ⊢ snd e : τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

x : τ1, Γ ⊢ e : τ2

Γ ⊢ λx . e : τ1 → τ2

18

Composite Data Types as Algebra, Logic Recursive Types

Squinting a Little
Lets remove all the terms, leaving just the types and the contexts:

Γ ⊢ 0

Γ ⊢ τ Γ ⊢ 1

Γ ⊢ τ1

Γ ⊢ τ1 + τ2

Γ ⊢ τ2

Γ ⊢ τ1 + τ2

Γ ⊢ τ1 + τ2 τ1, Γ ⊢ τ τ2, Γ ⊢ τ

Γ ⊢ τ

Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1 × τ2

Γ ⊢ τ1 × τ2

Γ ⊢ τ1

Γ ⊢ τ1 × τ2

Γ ⊢ τ2

Γ ⊢ τ1 → τ2 Γ ⊢ τ1

Γ ⊢ τ2

τ1, Γ ⊢ τ2

Γ ⊢ τ1 → τ2

Does this resemble anything you’ve seen before?

19

Composite Data Types as Algebra, Logic Recursive Types

A surprising coincidence!
Types are exactly the same structure as constructive logic:

Γ ⊢ ⊥
Γ ⊢ P Γ ⊢ ⊤

Γ ⊢ P1

Γ ⊢ P1 ∨ P2

Γ ⊢ P2

Γ ⊢ P1 ∨ P2

Γ ⊢ P1 ∨ P2 P1, Γ ⊢ P P2, Γ ⊢ P

Γ ⊢ P

Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1 ∧ P2

Γ ⊢ P1 ∧ P2

Γ ⊢ P1

Γ ⊢ P1 ∧ P2

Γ ⊢ P2

Γ ⊢ P1 → P2 Γ ⊢ P1

Γ ⊢ P2

P1, Γ ⊢ P2

Γ ⊢ P1 → P2

This means, if we can construct a program of a certain type, we
have also created a constructive proof of a certain proposition.

20

Composite Data Types as Algebra, Logic Recursive Types

The Curry-Howard Isomorphism
This correspondence goes by many names, but is usually attributed
to Haskell Curry and William Howard.
It is a very deep result:

Programming Logic
Types Propositions

Programs Proofs
Evaluation Proof Simplification

It turns out, no matter what logic you want to define, there is
always a corresponding λ-calculus, and vice versa.

Constructive Logic Typed λ-Calculus
Classical Logic Continuations
Modal Logic Monads
Linear Logic Linear Types, Session Types

Separation Logic Region Types

21

Composite Data Types as Algebra, Logic Recursive Types

Examples

Example (Commutativity of Conjunction)

andComm :: A× B → B × A
andComm p = (snd p, fst p)

This proves A ∧ B → B ∧ A.

Example (Transitivity of Implication)

transitive :: (A → B) → (B → C) → (A → C)
transitive f g x = g (f x)

Transitivity of implication is just function composition.

22

Composite Data Types as Algebra, Logic Recursive Types

Caveats
All functions we define have to be total and terminating.
Otherwise we get an inconsistent logic that lets us prove false
things:

proof 1 :: P = NP
proof 1 = proof 1

proof 2 :: P ̸= NP
proof 2 = proof 2

Most common calculi correspond to constructive logic, not
classical ones, so principles like the law of excluded middle or
double negation elimination do not hold:

¬¬P → P

23

Composite Data Types as Algebra, Logic Recursive Types

Inductive Structures

What about types like lists?

data IntList = Nil | Cons Int IntList

We can’t express these in MinHS yet:

1+ (Int×??)

We need a way to do recursion!

24

Composite Data Types as Algebra, Logic Recursive Types

Recursive Types

We introduce a new form of type, written rec t. τ , that allows us
to refer to the entire type:

IntList ≃ rec t. 1+ (Int× t)
≃ 1+ (Int× (rec t. 1+ (Int× t)))
≃ 1+ (Int× (1+ (Int× (rec t. 1+ (Int× t)))))
≃ · · ·

25

Composite Data Types as Algebra, Logic Recursive Types

Typing Rules

We construct a recursive type with roll, and unpack the recursion
one level with unroll:

Γ ⊢ e : τ [t := rec t. τ]

Γ ⊢ roll e : rec t. τ

Γ ⊢ e : rec t. τ

Γ ⊢ unroll e : τ [t := rec t. τ]

26

Composite Data Types as Algebra, Logic Recursive Types

Example

Example

Take our IntList example:

rec t. 1+ (Int× t)

[] = roll (InL ())
[1] = roll (InR (1, roll (InL ())))
[1, 2] = roll (InR (1, roll (InR (2, roll (InL ())))))

27

Composite Data Types as Algebra, Logic Recursive Types

Dynamic Semantics

Nothing interesting here:

e 7→M e ′

roll e 7→M roll e ′
e 7→M e ′

unroll e 7→M unroll e ′

unroll (roll e) 7→M e

28

	Composite Data
	

	Types as Algebra, Logic
	

	Recursive Types
	

